Welcome to the · Yale Idea Exchange Faculty Collaboration Series March 27, 2025

Yale Office of Research Development

2 Whitney Avenue
 203-432-9147
 ☑ researchdev@yale.edu
 ⊕ researchdev.yale.edu

ہنجی Please hold all questions until the end of the presentations.

Welcome to the (B): Yale Idea Exchange Faculty Collaboration Series March 27, 2025

Yale Office of Research Development

Ø

Misson: Enhance Yale's Research enterprise by supporting collaborative research across disciplines, schools, and institutions

Vision: To be a nationally recognized exemplary research development office and a sought-after resource for researchers at Yale

Yale Office of Research Development

Research Strategy, Communication, & Funding Intelligence

Limited Submissions & Internal Competitions

We support Yale's strongest candidates for competitive, limited-opportunity grants.

Strategic Research Positioning

Get guidance on aligning your research with funder priorities and long-term trends.

Funder Engagement Support

Learn how to connect with program officers and navigate the funding landscape.

Funding Opportunity Briefs & Newsletter

Receive curated funding intel directly to your inbox.

Funding Webinars & Reverse Site Visits

Engage directly with funders through tailored events and workshops.

Large-Scale Proposal Development & Facilitation

Pre-Proposal Planning Clarify your scope, team roles, and strategy before you start writing.

J — Structuring & Narrative Development

Graphics Support

Get visual support to make your proposal easier to understand and more compelling.

Red Team Reviews & Feedback Receive structured feedback to improve competitiveness before submission.

Proposal & Deliverable Roadmaps We manage timelines and deliverables so your team stays on track.

Team Facilitation & Oversight

We can help your team stay aligned from concept to submission.

Research Team Development & Strategic Collaborations

Strategic Team Formation We help you build competitive, cross-disciplinary teams for large grant opportunities.

Interdisciplinary Research Networks

Connect across departments and schools to spark new collaborations.

Collaboration and Networking Events Discover partners and opportunities through facilitated research events.

Research Partner Engagement Bring funders, national labs, and institutions

into conversations with Yale researchers.

Research Presentations

Using Stem Cells to Explore the Genetics of Brain Disease

Kristen Brennand

Departments of Psychiatry and Genetics

kristen.brennand@yale.edu

Using Stem Cells to Explore the Genetics of Brain Disease

My Research

- combines expertise in human stem cell models, genomic engineering, and neuroscience to identify the mechanisms that underlie brain development, traits, and disease
- dissects the complex interplay between genetic variants and the environment to springboard personalized approaches to improve health

I am seeking ...

- To expand our current research <u>beyond brain cells</u>
- Looking to explore interactions between:
 - metabolism and the brain
 - inflammation and the brain
 - mind-body connections

Kristen Brennand, PhD

Can we modify the impact of genetic risk?

How does context modify genetic risk?

	Contractory
-	AF
9	1A
smine	A

Donor genetics

- Development
 - Cell type
 - Sex
 - Environment (e.g. stress, inflammation, injury, metabolism, drugs, toxins)

Yale Office of Research Development

predisposition to Modeling brain disease with stem cells

Blood cells

Yale Office of Research Development

Kristen Brennand, PhD

- Departments of Psychiatry and Genetics
- kristen.brennand@yale.edu
- brennandlab.org
 - neurogenomics
 - metabolism and immunology

Yale Office of Research Development

Whitney Avenue
 researchdev.yale.edu
 researchdev@yale.edu

Bakshi Lab

Submitted grants- areas of study

-Yoga for chronic sickle cell pain -Longitudinal outcomes and risk classification of chronic SCD pain

Our current collaborations

Sickle Cell Treatment with Arginine (STaRT) I-STRONG for SCD STELLAR-Long term pain after HCT Pain after HCT in BMT CTN Studies

Upcoming Study

Enhancing care for Hemoglobinopathy trAits identified on Newborn screening through Counseling and **Education (ENHANCE)**

Seeking collaborations

Sickle cell disease **Oualitative research** Chronic pain Pediatric pain Integrative approaches to chronic pain

CONTACT Information

Nitya Bakshi, MBBS, MS

Associate Professor of Pediatrics

nitya.bakshi@yale.edu

Yale Office of Research Development

Methods

Areas of study

Acute and chronic pain in sickle cell disease

Risk-classification of chronic SCD pain

Decision making in SCD and SCD pain

- **Prospective longitudinal studies**
- Intensive longitudinal data

Biomarkers of SCD pain

- **Retrospective EHR data for studying pain**
- **Qualitative methods**

Ongoing work

Sickle Pain-Related Impact (SPiRIt)

This study aims to describe risk factors associated high-impact chronic pain in SCD.

A study of transition to chronic pain in SCD

This study aims to describe risk factors associated with transition from acute to chronic pain in SCD.

CAR-mast cells for solid tumors

Xiaolei Su

Cell Biology

Xiaolei.su@yale.edu

Yale Office of Research Development

Develop a novel cell therapy for solid tumors

My Research

- Engineered mast cells targeting solid tumors.
 - Long-lived in tissue
 - Rechargeable
 - Duel killing mechanism: directly killing and remodeling of tumor microenvironment

I am seeking ...

- Mouse models in solid tumors including brain, liver, breast, renal, prostate, and pancreatic cancers.
- Patient samples to test the efficacies of CAR-mast cells.

Xiaolei Su Associate Professor of Cell Biology

Superior anti-tumor effects by CAR-mast cells

Xiaolei Su, Associate Professor

Cell Biology

- Xiaolei.su@yale.edu
- Sulab.net

Immune Signaling; Cancer Immunotherapy Mouse tumor models; Cancer patient samples

Yale Office of Research Development

Electronic control of biosystems via bacterial protein nanowires to mitigate pollution & diseases

Nikhil S. Malvankar, Ph.D.

Molecular Biophysics and Biochemistry, Microbial Sciences Institute

<u>Nikhil.Malvankar@yale.edu</u> MalvankarLab.yale.edu

Yale Office of Research Development

How to use electron-transporting cells & proteins?

My Research

- Diverse environmentally & clinically important bacteria use hair-like protein "nanowires" to transfer metabolic electrons to extracellular molecules to respire w/o O_2
- Efficiently connect bacterial and biomolecular systems electronically using metal & metal-free nanowires for high-throuput environmental & health monitoring
 - Removal of pollutants (U, Oil) & gases (CH₄, CO)
 Synthesis of Ultrafast & living electronic materials
 Production of energy and fuels from organic waste
 Control microbial growth to prevent & cure infections
 Sensing/manipulating enzyme activity for catalysis

I am seeking ...

- Help with developing use of conductive bacteria & nanowires
- Understanding the transport of electrons, spins, ions, and excitons at unprecedented ultrafast (<100 fs) rates & over distances 10,000 times the size of an individual cell
- Leveraging charge transfer from microbe-to-microbe/plants/hosts in diverse species & environments

Imagine a world of low-cost, biodegradable nanomaterials w/o toxicity

Bacterial Factory Electronics & Photonics

ACS Biomat. (2016)

Regenerative Electronics

DNA Sequencing

Computing

Light Harvesting

Self-Powered Body Sensors

Closely-stacked (~3.5 Å) hemes transport electrons over micrometers

Yale Office of Research Development

Nikhil Malvankar, Assoc. Professor Mol. Biophys. & Biochem., Microbial Sci. Institute Nikhil.Malvankar@yale.edu Malvankarlab.yale.edu I combat climate change, pollution & diseases. I need help with developing use of nanowires.

Yale Office of Research Development

2 Whitney Avenue
 researchdev.yale.edu
 researchdev@yale.edu

How genetic and environmental factors are shaping adaptive immunity

Gur Yaari, Ph.D. Department of Pathology

Yale Office of Research Development

Yale Office of Research Development

Computational Immunology

- My Research
- Method development to represent and analyze high dimensional data
- Antibody and TCR repertoire sequencing analysis
- Genetic and evolution of the adaptive immune system

- I am seeking ...
- Challenging data types that require innovative analysis approaches
- Unique clinical cohorts
- Interesting questions ;)

Gur Yaari, Ph.D. Department of Pathology

gur.yaari@yale.edu

https://medicine.yale.edu/profile/gur-yaari/

. Data analysis and modeling

Interesting questions ;)

Yale Office of Research Development

♀ 2 Whitney Avenue
 ⊕ researchdev.yale.edu
 ⋈ researchdev@yale.ed

(I) Yale Idea Exchange

Naftali.kaminski@yale.edu

Yulmonary, Critical Care and Sleep Medicine

Pulmonary Fibrosis

King '14 hronic progressive form of fibrotic i Maher '18 The good : 2 FDA approved Drugs The helpful: Immunosuppressives detrimental, antibiotic don't help The difficult: 16 compounds stopped because of safety/lack of effect at Phase Hei31 The hopeful: O AzuTawo successful phase 3 this year One trial stopped because of safety despite evidence for efficacy IPFnet '1 Douglas '98 Raghu '04

Immunosuppression Kills the Patients

But Some Drugs can slow down the disease!

"Omics' of Advanced Lung Disease

Dynamic computational modeling of drug effects

A Digital Twin of Human Pulmonary Fibrosis What I have:

- Pulmonary Fibrosis Resources
- Unprecedented amount of cellular and spatial data
- Substantial mechanistic information
- Emerging knowledge on disease trajectories

• Industry interests

I am seeking ...

- Collaborations in establishing Foundational models that allow utilization of all data to create a digital twin of the human fibrotic lung on all its cellular components to accelerate drug development
- Users and testers of specific hypotheses and models
- Disruptive ideas and fresh looks at our data

Naftali Kaminski MD

Pulmonary, Critical Care and Sleep Medicine

🖂 Naftali.kaminski@yale.edu

https://medicine.yale.edu/lab/kaminski/

Translational Medicine, Fibrosis, Genomics

Al, machine learning, drug design

Yale Office of Research Development

2 Whitney Avenue
 researchdev.yale.edu
 researchdev@yale.edu

RNA senses cellular change

Karla Neugebauer

Molecular Biophysics and Biochemistry

Karla.Neugebauer@yale.edu

Yale Office of Research Development

Custom sequencing approaches

Long read sequencing of nascent RNA

CoSTseq tracks structure formation

RNA senses cellular change

My Research can discover and quantify rapid changes in RNA abundance, sequence and structure in response to:

- Cancer/chemotherapeutics
- Blood diseases
- Temperature change, nutrient availability (acclimation, biofactories)
- Neural development (splicing events associated with autism)
- Neurological disease... and more!

I am broadly interested in interdisciplinary research and funding opportunities... Neuroscience Ecology Hematology Cancer Biology Computational biology Hot Green Engineering AI

Cold

Yale Office of Research Development

Professor Karla Neugebauer MB&B

karla.Neugebauer@yale.edu

- https://www.neugebauerlab.com/
 - **RNA** biochemistry

Measuring change in living systems

Yale Office of Research Development

2 Whitney Avenue
 researchdev.yale.edu
 researchdev@yale.edu

Biophysical mechanisms of gene regulation

Kirstin Meyer

MCDB & Systems Biology Institute

Kirstin.Meyer@yale.edu

Biophysical mechanisms of gene regulation

Our Research

Understanding emergent gene regulatory behaviors through the lens of chromatin biophysics

- single-molecule imaging
- optogenetics
- synthetic approaches
- mouse embryonic stem cells

Å

Looking for collaborators

- Theoretical-computational approaches to understand condensates, chromatin biophysics (e.g. RNA-protein interactions)
- Spatial transcriptomics analysis (e.g. cell-cell communication)

MCDB

Kirstin.meyer@yale.edu

meyerlab@yale.edu

Phase separation, biophysics, gene regulation, optogenetics, imaging

Theoretical-computational approaches underlying phase separation, spatial transcriptomics

Yale Office of Research Development

2 Whitney Avenue
 researchdev.yale.edu
 researchdev@yale.edu

Dark matter of the genome: microproteins

Sarah Slavoff

Yale Chemistry

sarah.slavoff@yale.edu

Microproteins: technology, basic biology and applications

My Research

- How many proteins and peptides are really encoded in the human genome?
- Technology: proteomics and sequencing for microprotein discovery and characterization
- Molecular mechanisms and cellular functions

Yale Idea Exchange

• Collaborations: model organisms, human disease, big questions

I am seeking ...

- Disease applications: biomarkers, mechanism
- New biological questions: microproteins are everywhere
- We are always ready to generate preliminary data to test ideas and support grant applications

Yale Office of Research Development

Funding landscape for microprotein research

With Grace Chen and Joe Craft, Yale IBIO

In response to a specific call for research on microproteins in the immune system

year grants between \$1M and \$1.5M to individuals and teams

Discovery of micropeptides in human immune cells and systemic lupus erythematosus

Current RFA, part of international team

The time to think big on collaborative microprotein research is now

With Ruth Halaban, Yale Dermatology

The Mark Foundation*

About Usv Researchv Workshops Investments Impa-

Discovery of Microproteins in Melanoma

2022 Emerging Leader Award

Sarah Slavoff, PhD, Yale University

Yale Office of Research Development

Sarah Slavoff, Associate Professor Tenure

- Chemistry (secondary, MB&B)
- sarah.slavoff@yale.edu
- slavofflab.yale.edu

Microproteins, proteomics, genomics
 Cancer, immunobiology, structural biology, and anyone who finds this question inspiring!

Pale Idea Exchange

Yale Office of Research Development

2 Whitney Avenue
 researchdev.yale.edu
 researchdev@yale.edu

Understanding gene module evolution using AI-based approaches

Kejue Jia

Department of Molecular, Cellular and Developmental Biology

Kejue.jia@yale.edu

Associate Research Scientist

My Research

- Tracking synaptic protein interactions across different organisms
 - Advanced protein homolog detection
 - Protein-Protein interaction prediction
 - Cross species cell type comparison (scRNA seq analysis)

We are seeking ...

- Biologists interested in comparative study of gene module/protein machinery across different organisms
 - Gene homolog detection and annotations, Protein interaction predictions, ...
- Teams with AI expertise / resources
 - Can work together to build AI-based computational infrastructures for solving biological questions

Tracking synaptic protein interactions across different organisms

Liebeskind, Benjamin J., et al. 2017. Annual review of ecology, evolution, and systematics

Complex protein machineries working together within a synapse

When those interactions start to take place in the history of evolution

Kejue Jia, Associate Research Scientist Molecular, Cellular and Developmental Biology kejue.jia@yale.edu, jacob.musser@yale.edu https://www.musserlab.org/ AI-based tools for studying gene module evolution Biologists OR AI specialists

Yale Office of Research Development

2 Whitney Avenue
 researchdev.yale.edu
 researchdev@yale.edu

Examples of YRD Supported Large Grant Opportunites

 NSF-AFRL REsearch in FLoquet Engineered QuanTum Systems (NSF-AFRL REFLEQTS)

 National Artificial Intelligence **Research Institutes**

- Biology Integration Institutes (BII)
- NSF Regional Innovation Engines^{*} (NSF Engines)
- Engineering Research Centers
- Expeditions in Computing (Expeditions)

- Centers for Chemical Innovation (CCI)
- Industry-University Cooperative **Research Centers Program** (IUCRC)
- Materials Innovation Platforms (MIP)
- Materials Research Science and Engineering Centers (MRSEC) Quantum Leap Challenge
- Institutes (QLCI) Science and Technology
 - Centers: Integrative Partnerships

QBI: Quantum Benchmarking Initiative

Defense University Research Instrumentation Program (DURIP)

Energy Frontier Research Centers (EFRCs)

Yale Office of Research Development

YRD Website

2 Whitney Avenue 203-432-9147 ⊠ researchdev@yale.edu researchdev.vale.edu

YRD | Supporting Yale's research community from concept to collaboration.